Nonlinear thermal transport of non-Newtonian polymer flows is an increasingly important area in materials engineering. Motivated by new developments in this area which entail more refined and more mathematical frameworks, the present analysis investigates the boundary-layer approximation and heat transfer persuaded by a symmetrical cylindrical surface positioned horizontally. To simulate thermal relaxation impacts, the bioconvection Cross nanofluid flow Buongiorno model is deployed. The study examines the magnetic field effect applied to the nanofluid using the heat generated, as well as the melting phenomenon. The nonlinear effect of thermosolutal buoyant forces is incorporated into the proposed model. The novel mathematical equations include thermophoresis and Brownian diffusion effects. Via robust transformation techniques, the primitive resulting partial equations for momentum, energy, concentration, and motile living microorganisms are rendered into nonlinear ordinary equations with convective boundary postulates. An explicit and efficient numerical solver procedure in the Mathematica 11.0 programming platform is developed to engage the nonlinear equations. The effects of multiple governing parameters on dimensionless fluid profiles is examined using plotted visuals and tables. Finally, outcomes related to the surface drag force, heat, and mass transfer coefficients for different influential parameters are presented using 3D visuals.