Slip, or accidental loss, of grasped biological tissue can have negative consequences in all types of surgery (open, laparoscopic, robot-assisted). This work focuses on slip in robot-assisted surgery (RAS) with the goal of improving the quality of grasping and tool–tissue interactions. We report on a survey of 112 RAS surgeons, the results of which support the value of detecting and reducing slip in a variety of procedures. We conducted validation tests using a thermal slip sensor in a surgical grasper on tissue in vivo and ex vivo. The results of the survey and validation informed a user study to assess whether tissue slip feedback can improve performance and reduce effort in a phantom tissue manipulation task. With slip feedback, experienced subjects were significantly faster to complete the task, dropped tissue less (3% versus 38%), and experienced decreased mental demands and situational stress. These results provide motivation to further develop the sensor technology and incorporate it in robotic surgical equipment.