2024
DOI: 10.1038/s41598-024-60675-6
|View full text |Cite
|
Sign up to set email alerts
|

SLKIR: A framework for extracting key information from air traffic control instructions Using small sample learning

Peiyuan Jiang,
Chen Zeng,
Weijun Pan
et al.

Abstract: In air traffic control (ATC), Key Information Recognition (KIR) of ATC instructions plays a pivotal role in automation. The field's specialized nature has led to a scarcity of related research and a gap with the industry's cutting-edge developments. Addressing this, an innovative end-to-end deep learning framework, Small Sample Learning for Key Information Recognition (SLKIR), is introduced for enhancing KIR in ATC instructions. SLKIR incorporates a novel Multi-Head Local Lexical Association Attention (MHLA) m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?