This paper describes existence, uniqueness and special eigenfunction representations of H 1 -solutions of second order, self-adjoint, elliptic equations with both interior and boundary source terms. The equations are posed on bounded regions with Dirichlet conditions on part of the boundary and Neumann conditions on the complement. The system is decomposed into separate problems defined on orthogonal subspaces of H 1 ( ). One problem involves the equation with the interior source term and the Neumann data. The other problem just involves the homogeneous equation with Dirichlet data. Spectral representations of the solution operators for each of these problems are found. The solutions are described using bases that are, respectively, eigenfunctions of the differential operator with mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series converge strongly in H 1 ( ). Necessary and sufficient conditions for the Dirichlet part of the boundary data to have a finite energy extension are described. The solutions for a problem that models a cylindrical capacitor is found explicitly.