Skeletal muscle fibers vary in contractile and metabolic properties. Four main fiber types are present in mammalian trunk and limb muscles; they are called I, IIA, IIX and IIB, ranging from slowest- to fastest-contracting. Individual muscles contain stereotyped proportions of two or more fiber types. Fiber type is determined by a combination of nerve-dependent and –independent influences, leading to formation of “homogeneous motor units” in which all branches of a single motor neuron form synapses on fibers of a single type. Fiber type composition of muscles can be altered in adulthood by multiple factors including exercise, denervation, hormones and aging. To facilitate analysis of muscle development, plasticity and innervation, we generated transgenic mouse lines in which Type I, Type IIA, and Type IIX+B fibers can be selectively labeled with distinguishable fluorophores. We demonstrate their use for motor unit reconstruction and live imaging of nerve-dependent alterations in fiber type.