Eukaryotic photosynthetic organisms synthesize triacylglycerols, which are crucial physiologically as major carbon and energy storage compounds and commercially as food oils and raw materials for carbon-neutral biofuel production. TLC analysis has revealed triacylglycerols are present in several cyanobacteria. However, mass spectrometric analysis has shown that freshwater cyanobacterium, Synechocystis sp. PCC 6803, contains plastoquinone-B and acyl plastoquinol with triacylglycerol-like TLC mobility, concomitantly with the absence of triacylglycerol. Synechocystis contains slr2103, which is responsible for the bifunctional synthesis of plastoquinone-B and acyl plastoquinol and also for NaCl-stress acclimatizing cell growth. However, information is limited on the taxonomical distribution of these plastoquinone lipids, and their synthesis genes and physiological roles in cyanobacteria. In this study, a euryhaline cyanobacterium, Synechococcus sp. PCC 7002, shows the same plastoquinone lipids as those in Synechocystis, although the levels are much lower than in Synechocystis, triacylglycerol being absent. Furthermore, through an analysis of a disruptant to the homolog of slr2103 in Synechococcus, it is found that the slr2103 homolog in Synechococcus, similar to slr2103 in Synechocystis, contributes bifunctionally to the synthesis of plastoquinone-B and acyl plastoquinol; however, the extent of the contribution of the homolog gene to NaCl acclimatization is smaller than that of slr2103 in Synechocystis. These observations suggest strain- or ecoregion-dependent development of the physiological roles of plastoquinone lipids in cyanobacteria and show the necessity to re-evaluate previously identified cyanobacterial triacylglycerol through TLC analysis with mass spectrometric techniques.