The paper refers to the spring-exchange magnetic systems containing magnetically soft and hard phases. This work consists of two parts. The first part is a brief review of hard magnetic materials, with special attention paid to ultra-high coercive compounds, as well as selected spring-exchange systems. The second part is a theoretical discussion based on the Monte Carlo micromagnetic simulations about the possible enhancement of the hard magnetic properties of systems composed of magnetically soft, as well as high and ultra-high coercive, phases. As shown, the analyzed systems reveal the potential for improving the |BH|max parameter, filling the gap between conventional and Nd-based permanent magnets. Moreover, the carried-out simulations indicate the advantages and limitations of the spring-exchange composites, which could lead to a reduction in rare earth elements in permanent magnet applications.