SM-CycleGAN: crop image data enhancement method based on self-attention mechanism CycleGAN
Dian Liu,
Yang Cao,
Jing Yang
et al.
Abstract:Crop disease detection and crop baking stage judgement require large image data to improve accuracy. However, the existing crop disease image datasets have high asymmetry, and the poor baking environment leads to image acquisition difficulties and colour distortion. Therefore, we explore the potential of the self-attention mechanism on crop image datasets and propose an innovative crop image data-enhancement method for recurrent generative adversarial networks (GANs) fused with the self-attention mechanism to … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.