The geological record of intraplate deformation in central Australia implies that past tectonic activity (basin formation, deformation and erosion) has modulated the response of the lithosphere during subsequent tectonic activity. In particular, there is a correspondence between the localization of deformation during intraplate orogeny and the presence of thick sedimentary successions in the preserved remnants of a formerly widespread intracratonic basin. This behaviour can be understood as a kind of 'tectonic feedback', effected by the longterm thermal and mechanical consequences of changes in the distribution of heat producing elements induced by earlier tectonism. From a geochemical point of view, one of the most dramatic effects of intraplate orogeny in central Australia has been the exposure, in the cores of the orogens, of deep crustal rocks largely depleted in the heat producing elements. The geochemical structuring of the crust associated with the erosion of the heat-producing upper crust resulted in long-term cooling of the deep crust and upper mantle with associated lithospheric strengthening. This is illustrated here by mapping the consequences of deformation and associated tectonic responses onto the h-q c plane, where h is the characteristic length-scale for heat production distribution, and q c is the total crustal heat production.