Background
Cameroon has witnessed a 131,000 increase in malaria cases, according to a recent report addressing the malaria burden and control strategies in endemic regions. Studies have illustrated the association between malaria cases and environmental factors in Cameroon but limited in addressing how these factors vary in space for timely interventions. Thus, we want to find the spatial variability between malaria hotspot cases and environmental predictors using Geographically weighted regression (GWR) spatial modelling technique.
Methods
The global Ordinary least squares(OLS) tool in the modelling spatial relationships tool in ArcGIS 10.3. was used to select candidate explanatory environmental variables for a properly specified GWR model. The local GWR model used the OLS candidate variables to examine, predict and explore the spatial variability between environmental factors and malaria hotspot cases generated from Getis-Ord Gi* statistical analysis. Spatial maps of mosquito bed net ownership and GWR outputs were also created for public health surveillance.
Results
The OLS candidate environmental variable coefficients were statistically significant for a properly specified GWR model (adjusted R2 = 22.3% and p < 0.01). The GWR model identified a strong association between malaria cases and rainfall, vegetation index, population density, and drought episodes in most hotspot areas and a weak correlation with aridity and proximity to water (adjusted R2= 24.3%). The mosquito bed nets analysis maps demonstrated an overall low coverage(<50%) of household ownership.
Conclusion
The generated GWR maps suggest that for policymakers to eliminate malaria in Cameroon by 2030, there should be the creation of outreach programs that will target malaria hotspots locations, intensify free insecticidal net distribution, allocate specific funding, establish vaccination campaigns and carry out further investigations in areas where the environmental variables showed strong spatial associations with malaria hotspot cases.