2021
DOI: 10.1016/bs.po.2021.01.001
|View full text |Cite
|
Sign up to set email alerts
|

Small focal spot formation by vector beams

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
4
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 152 publications
0
4
0
1
Order By: Relevance
“…Laguerre-Gaussian vortex beams with different radial modes (p > 0), known as multi-ring-shaped beams, have garnered growing attention due to their distinctive characteristics, making it a promising model in the field of beam shaping. The destructive interference between the rings in high-order Laguerre-Gaussian beams is effectively reduced the focal spot [30]. For instance, without phase singularity, polarized multi-ring-shaped beams have been used to generate different focal shapes such as multiple focal segments [31,32], dark channels [33], and sharp focal spots [30].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Laguerre-Gaussian vortex beams with different radial modes (p > 0), known as multi-ring-shaped beams, have garnered growing attention due to their distinctive characteristics, making it a promising model in the field of beam shaping. The destructive interference between the rings in high-order Laguerre-Gaussian beams is effectively reduced the focal spot [30]. For instance, without phase singularity, polarized multi-ring-shaped beams have been used to generate different focal shapes such as multiple focal segments [31,32], dark channels [33], and sharp focal spots [30].…”
Section: Introductionmentioning
confidence: 99%
“…The destructive interference between the rings in high-order Laguerre-Gaussian beams is effectively reduced the focal spot [30]. For instance, without phase singularity, polarized multi-ring-shaped beams have been used to generate different focal shapes such as multiple focal segments [31,32], dark channels [33], and sharp focal spots [30]. Furthermore, in our recent study, double focal spots and flat-topped focal segments are generated by focusing a radially polarized double-ring-shaped beam using a linear axicon in the presence of the phase singularity [3].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Vector laser beams are laser beams where the polarization is not constant in space, and cylindrical vector beams (CVBs) are a specific case of vector beams where the polarization distribution is cylindrically symmetric [1]. Such CVBs have been well known for some time to create a smaller focal spot than linearly polarized beams when tightly focused [2,3], which can have an important impact on microscopy [4,5], for example. Beyond that, the specific arrangement of the intensity distribution around the focus can result in interesting properties for particle manipulation [6].…”
Section: Introductionmentioning
confidence: 99%
“…究者还发现光针可应用于光学相干层析显微成像 [6] 和光声显微成像 [7] ,以实现大 焦深的显微成像,因此如何获得横向尺寸更小,纵向长度更长的超分辨光针成为 后续急需解决的问题。 超分辨光针的产生方法研究目前主要集中于柱矢量偏振光, 虽然最新的研究结果表明 [6] ,使用多焦点控制技术可以不依赖光束偏振态获得超 长焦深的光针,但其横向分辨率仍然无法与柱矢量偏振光光针相比,且随着光针 横向分辨率的提升, 光源的衍射效率会急剧下降, 当横向分辨率达到衍射极限时, 其衍射效率只有不到 2%,所以此方法并不适用于实现超分辨光针。 径向偏振光最常被用于实现超分辨光针。2008 年,Wang 等设计了 5 环带的 环形二元相位板,对径向偏振贝塞尔高斯光束进行了波前相位调制,将大部分能 量调制到了纵向分量上,实现了横向半高全宽(full-width at half-maximum, FWHM)为 0.43 ,纵向 FWHM 为 4 的聚焦电场,并提出了光针的概念 [8] ,极大 推动了该方向的研究进展。2010 年,Li 等提出了环形二元相位板的优化设计方 法 [9] 。2013 年,Guo 等设计了 17 环带的复杂二元相位板,使用高阶径向偏振拉 盖尔高斯光束实现了横向 FWHM 为 0.41 ,纵向 FWHM 为 9.53 的光针 [10] 。随 后,这一指标再未得到明显提升,直到 2020 年,Zhang 等人更改了波前调制思 路,使用多焦点再融合的思想,用扇形相位板对径向偏振贝塞尔高斯光束进行了 调制,实现了横向 FWHM 为 0.6 ,纵向 FWHM 为 20.3 的超长光针 [11] 。这种 调制方法虽然大幅增加了光针的纵向长度,但缺点是横向分辨率也大幅下降了, 甚至未能突破衍射极限。2021 年,Huang 等改进了环形二元相位板的优化设计 方法 [12] ,分别使用 14 环带和 27 环带实现了纵向 FWHM 为 24 和 43 的超长光 针,但由于环带数量较多,较难实验实现。 随着涡旋光束研究的飞速发展,研究者发现拓扑荷数为 1  的角向偏振涡旋 光束紧聚焦后也可获得超分辨焦斑,且焦斑尺寸甚至小于径向偏振光的结果 [13] , 因此有研究者开始尝试利用此种光束来实现超分辨光针。2011 年,Yuan 等利用 环形二元相位板波前调制的方法, 使得 1 阶角向矢量涡旋光束紧聚焦后获得了长 度约为 5 的光针 [14] 。2014 年,Gu 等使用类似的方法,将光针长度提升到约 7 [15] 。2021 年,Shi 等利用宽度为 80.7 m  窄带环形光阑对 1 阶角向涡旋矢量光束 进行了遮挡,实验实现了横向 FWHM 为 0.416 ,纵向 FWHM 为15.6 的超长光 针 [16] 。这一结果在保持超分辨的前提下,大幅提升了光针长度,但由于使用了 超窄带光阑遮挡,因此光源的衍射效率极低。2022 年,Pan 等同时调制了光束的 振幅和相位, 结果表明使用多环形 1 阶角向涡旋矢量光束结合相位调制可实现长 度约为10 的光针 [17] 。 如前所述, 超分辨光针的研究主要集中于径向偏振光和 1 阶角向矢量涡旋光。 其中前者的研究已较为成熟 [18,19] ,径向偏振光紧聚焦可视为位于焦点位置的纵…”
unclassified