Deep learning methods benefit from data sets with comprehensive coverage (e.g., ImageNet, COCO, etc.), which can be regarded as a description of the distribution of real-world data. The models trained on these datasets are considered to be able to extract general features and migrate to a domain not seen in downstream. However, in the open scene, the labeled data of the target data set are often insufficient. The depth models trained under a small amount of sample data have poor generalization ability. The identification of new categories or categories with a very small amount of sample data is still a challenging task. This paper proposes a few-shot fine-grained image recognition method. Feature maps are extracted by a CNN module with an embedded attention network to emphasize the discriminative features. A channel-based feature expression is applied to the base class and novel class followed by an improved cosine similarity-based measurement method to get the similarity score to realize the classification. Experiments are performed on main few-shot benchmark datasets to verify the efficiency and generality of our model, such as Stanford Dogs, CUB-200, and so on. The experimental results show that our method has more advanced performance on fine-grained datasets.