2023
DOI: 10.37236/11004
|View full text |Cite
|
Sign up to set email alerts
|

Small Sets in Union-Closed Families

Abstract: Our aim in this note is to show that, for any $\epsilon>0$, there exists a union-closed family $\mathcal F$ with (unique) smallest set $S$ such that no element of $S$ belongs to more than a fraction $\epsilon$ of the sets in $\mathcal F$. More precisely, we give an example of a union-closed family with smallest set of size $k$ such that no element of this set belongs to more than a fraction $(1+o(1))\frac{\log_2 k}{2k}$ of the sets in $\mathcal F$. We also give explicit examples of union-closed famili… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?