Abstract:Our aim in this note is to show that, for any $\epsilon>0$, there exists a union-closed family $\mathcal F$ with (unique) smallest set $S$ such that no element of $S$ belongs to more than a fraction $\epsilon$ of the sets in $\mathcal F$. More precisely, we give an example of a union-closed family with smallest set of size $k$ such that no element of this set belongs to more than a fraction $(1+o(1))\frac{\log_2 k}{2k}$ of the sets in $\mathcal F$.
We also give explicit examples of union-closed famili… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.