<p style='text-indent:20px;'>Over the past few years, the codes <inline-formula><tex-math id="M1">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> arising from the incidence of points and hyperplanes in the projective space <inline-formula><tex-math id="M2">\begin{document}$ {\rm{PG}}(n,q) $\end{document}</tex-math></inline-formula> attracted a lot of attention. In particular, small weight codewords of <inline-formula><tex-math id="M3">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> are a topic of investigation. The main result of this work states that, if <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula> is large enough and not prime, a codeword having weight smaller than roughly <inline-formula><tex-math id="M5">\begin{document}$ \frac{1}{2^{n-2}}q^{n-1}\sqrt{q} $\end{document}</tex-math></inline-formula> can be written as a linear combination of a few hyperplanes. Consequently, we use this result to provide a graph-theoretical sufficient condition for these codewords of small weight to be minimal.</p>