2013
DOI: 10.1016/j.jns.2013.07.1091
|View full text |Cite
|
Sign up to set email alerts
|

Small-world characteristics of EEG patterns in post-anoxic encephalopathy

Abstract: Post-anoxic encephalopathy (PAE) has a heterogenous outcome which is difficult to predict. At present, it is possible to predict poor outcome using somatosensory evoked potentials in only a minority of the patients at an early stage. In addition, it remains difficult to predict good outcome at an early stage. Network architecture, as can be quantified with continuous electroencephalography (cEEG), may serve as a candidate measure for predicting neurological outcome. Here, we explore whether cEEG monitoring can… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2015
2015
2015
2015

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 31 publications
0
2
0
1
Order By: Relevance
“…In particular, automated algorithms have been developed to reduce the subjective part of EEG interpretation (Noirhomme et al, 2014), but are still very far from routine clinical use. More advanced analyses, including single-trial topographic interpretation applied to mismatch negativity paradigms (Tzovara et al, 2013) or comparison of small-world characteristics of EEG spontaneous activity (Beudel et al, 2014) are showing promising results in outcome prediction, but, again, these are still the subject of scientific research and are not (yet) ready for clinical application. The increasing awareness of the ACNS nomenclature should lead to a uniform way of reporting EEG, and thus help with the cross-correlations of clinical reports (Sivaraju et al, in press;Westhall et al, 2015).…”
Section: Perspectivesmentioning
confidence: 99%
“…In particular, automated algorithms have been developed to reduce the subjective part of EEG interpretation (Noirhomme et al, 2014), but are still very far from routine clinical use. More advanced analyses, including single-trial topographic interpretation applied to mismatch negativity paradigms (Tzovara et al, 2013) or comparison of small-world characteristics of EEG spontaneous activity (Beudel et al, 2014) are showing promising results in outcome prediction, but, again, these are still the subject of scientific research and are not (yet) ready for clinical application. The increasing awareness of the ACNS nomenclature should lead to a uniform way of reporting EEG, and thus help with the cross-correlations of clinical reports (Sivaraju et al, in press;Westhall et al, 2015).…”
Section: Perspectivesmentioning
confidence: 99%
“…10 In the current Dutch guideline, 10 early prognostication after CPR mainly relies on somatosensory-evoked potentials (SSEPs) which only have a sensitivity for predicting bad outcome around 24%. 11 For this reason, new prognostication strategies, using more than 1 predictor, [12][13][14] are being developed. Since good early predictors of prognosis can both give more accurate information to the clinicians and the relatives of patients and reduce costs the of intensive care unit admission in case of an unfavorable prognosis, more reliable predictors are of great value.…”
Section: Introductionmentioning
confidence: 99%
“…La mayor parte de los esfuerzos se han enfocado en tareas de segmentación del tejido y estructuras anatómicas cardiacas (por ejemplo el endocardio), que por lo general es el paso previo para realizar cualquier otro tipo de estudio, como la detección de lesiones o la clasificación por patologías. El primer estudio puramente realizado con deep learning data de 2013, y en él se aplicó a la segmentación del ventrículo izquierdo a partir de ecocardiografía113 . Los concursos tipo datathon se han utilizado sistemáticamente desde 2009 como herramienta de explotación de imágenes cardiacas, principalmente con objetivos de segmentación del ventrículo izquierdo y derecho, a partir de diferentes imágenes, fundamentalmente resonancia magnética y tomografía14,100,114 .…”
unclassified