Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Introduction. Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1. Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods: We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results: DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions: Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
IntroductionAbnormalities in the hippocampus have been extensively reported in schizophrenia research. However, inconsistent findings exist, and how structural and functional abnormalities of the hippocampus are associated with clinical symptoms in schizophrenia, especially concerning clozapine treatment, remains uncertain.MethodsWe recruited 52 patients with schizophrenia, each with an illness duration of at least 5 years, and categorized them based on clozapine treatment. T1-weighted images and resting-state functional magnetic resonance imaging scans were obtained and analyzed to perform group comparisons of the structural and functional changes in the hippocampus. Volumes of the hippocampal subregions, as well as resting-state functional connectivity maps from these areas were compared between the groups. Associations with clinical symptoms, including the severity of psychiatric symptoms and cognitive functions, were investigated.ResultsThe clozapine group (n=23) exhibited smaller volumes in several hippocampal subregions, including the CA1, CA4, granule cell and molecular layers of the dentate gyrus, compared to the non-clozapine group (n=29). Seven clusters with significant group differences in functional connectivity with these hippocampal subregions were identified, with six of these clusters showing increased functional connectivity in the clozapine group. The reduced volumes of the hippocampal subregions were moderately associated with the severity of negative symptoms, general intelligence, and executive function.DiscussionPatients with schizophrenia undergoing clozapine treatment exhibited smaller volumes in the hippocampal subregions, which were moderately associated with negative symptoms and cognitive functions, compared to those without clozapine treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.