Cleaning is a fundamental phase of the conservation and maintenance activity of the cultural heritage. It is required to be highly effective in the removal of undesired deposits, controllable at every stage and gradable, selective, and completely respectful of the substrate. Moreover, cleaning procedures which can also assure to be harmless to the environment and the operators are particularly valued nowadays. According to these general guidelines, in the present work a sustainable approach for the cleaning of indoor surfaces of the cultural heritage is presented. A methodology based on agar gel was setup and preliminary tested on pilot areas. It has been then applied to the stone sculpted surfaces of the "Fuga in Egitto" high-relief of the Duomo of Milan. A multi-analytical approach was carried out during the setup phase to compare the efficacy of different cleaning conditions in terms of agar concentration, application time and presence of additives. Hence, spectrophotometric measurements, optical observations, ESEM-EDX analyses, Fourier Transform Infrared Spectroscopy, and X-Ray Diffraction were performed. Specific attention was paid to the aesthetic features of the sculpted surfaces before and after the cleaning. For this purpose, spectrophotometric data have been analysed by multivariate analysis techniques such as Principal Component Analysis and Hierarchic Cluster Analysis. The overall intervention has been monitored to evaluate the cleaning results and to confirm the absence of any damage to the stone substrate. The application of agar gel proved to be effective in removing soluble salts and soot particles, as well as very respectful of the valuable sculpted surfaces. This methodology is also totally safe for both the operators and the visitors, it is based on a natural and low-cost raw material, and it is low time-consuming. It can be therefore considered as a sustainable alternative to the traditional procedures.