Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Ένα από τα πιο καίρια ερωτήματα για τους χρήστες του διαδικτύου, είναι πώς θα καταφέρουν να διαχειριστούν την τεράστια ποσότητα διαθέσιμης πληροφορίας, ώστε να καταλήξουν σε επιλογή προϊόντων που ανταποκρίνονται όσο το δυνατό καλύτερα στις προτιμήσεις και ανάγκες τους. Αντίστοιχα, οι εταιρείες που παρέχουν προϊόντα ή υπηρεσίες μέσω του διαδικτύου, προσπαθούν συστηματικά να εντοπίσουν μεθόδους ώστε να αποκωδικοποιήσουν με ακρίβεια τα προφίλ προτίμησης των χρηστών, με στόχο να καταφέρουν να προσαρμόσουν κατάλληλα τα προϊόντα τους και να αυξήσουν τις πωλήσεις τους.Για τους παραπάνω λόγους, η επιστημονική και ερευνητική κοινότητα που δραστηριοποιείται στο τομέα της ανάλυσης δεδομένων και το μάρκετινγκ έχει επικεντρώσει την προσπάθεια της, στην δημιουργία μεθοδολογιών που θα απαντήσουν όσο το δυνατόν πιο αποτελεσματικά τα παραπάνω ερωτήματα. Οι περισσότερες από αυτές τις μεθοδολογίες καταλήγουν στην ανάπτυξη προσαρμοστικών συστημάτων που αντλούν δεδομένα από το διαδίκτυο και εξάγουν προτάσεις για τους χρήστες. Η πιο γνωστή κατηγορία τέτοιου είδους συστημάτων είναι τα συστήματα συστάσεων (Recommender Systems). Στην παρούσα ερευνητική εργασία παρουσιάζεται η μεθοδολογία και τα αποτελέσματα πιλοτικής λειτουργίας ενός νέου υβριδικού συστήματος συστάσεων που βασίζεται στη χρήση μεθόδων ανάλυσης συναισθήματος, πολυκριτήριας ανάλυσης καθώς και μεθόδων φιλτραρίσματος. Η μεθοδολογία καταλήγει σε τέσσερα διαφορετικά είδη σύστασης, με άκρως ενδιαφέροντα αποτελέσματα.Μέσω του μεθοδολογικού πλαισίου γίνεται εφικτός ο προσδιορισμός των προτιμησιακών προφίλ των χρηστών του συστήματος, τα οποία εν συνεχεία αντιστοιχίζονται σε «προφίλ πελατών» που επιλέγουν συγκεκριμένα προϊόντα/υπηρεσίες που τους «ταιριάζουν».Έτσι, καταλήγουμε σε προσωποποιημένες συστάσεις προϊόντων στον χρήστη του συστήματος, που είναι ανάλογες των προτιμήσεων του. Επιπλέον δίνεται στο χρήστη η δυνατότητα να φιλτράρει τις διαθέσιμες εναλλακτικές με σχετική επιλογή από ένα σύνολο κατ’ αποκοπή κριτηρίων. Η χρήση του κατωφλιού ελάχιστης ικανοποίησης, που προσδιορίζεται από τα αποτελέσματα της ανάλυσης συναισθήματος στα σχόλια των πελατών, εγγυάται την ποιότητα των συστάσεων.Τα δεδομένα του συστήματος είναι πραγματικές απόψεις και βαθμολογίες χρηστών για καταλύματα, καθώς και χαρακτηριστικά καταλυμάτων που αντλήθηκαν από γνωστή διαδικτυακή πλατφόρμα κρατήσεων. H ανάπτυξη του συστήματος βασίστηκε στην μεθοδολογία CRISP-DM(Shearer, 2000a). Η αξιολόγηση του συστήματος συστάσεων γίνεται με μέτρηση της ακρίβειας προβλέψεων αξιολογήσεων σε πείραμα με πραγματικούς χρήστες.Για τη μελέτη περίπτωσης χρησιμοποιήθηκαν δεδομένα για τα τουριστικά καταλύματα του Νομού Χανίων. Τα πιο σημαντικά χαρακτηριστικά της συγκεκριμένης ερευνητικής προσπάθειας είναι: α. H χρήση μεγάλου όγκου πραγματικών δεδομένων σε αντίθεση με τις περισσότερες από τις υπάρχουσες έρευνες που χρησιμοποιούν έτοιμα τεστ σετ δεδομένων. β. Η χρησιμοποίηση όλης της διαθέσιμης αντλημένης πληροφορίας προκειμένου να καταλήξουμε σε σύσταση. Πιο συγκεκριμένα στην παρούσα μεθοδολογία χρησιμοποιούνται δεδομένα βαθμολογιών προϊόντων για την ανάλυση ικανοποίησης πελατών, δεδομένα απόψεων για τη συναισθηματική ανάλυση, στατικά δεδομένα των προϊόντων σαν κατ’ αποκοπή κριτήρια σε αντίθεση με τις περισσότερες μελέτες όπου χρησιμοποιούνται είτε βαθμολογίες, είτε ανάλυση σχολίων για την τελική σύσταση.γ. Η χρήση των αποτελεσμάτων της ανάλυσης συναισθήματος ως κατώφλια ποιότητας σύστασης. δ. Η επιτυχής εφαρμογή παραλλαγής της πρόσφατα παρουσιασθείσας μεθόδου WAP, για τη δημιουργία προτιμησιακού προφίλ χρήστη.ε. Η απαίτηση για εισαγωγή ελάχιστων δεδομένων από το χρήστη.στ. Ο ελάχιστος χρόνος που απαιτείται για την παραγωγή της σύστασης κατά τη λειτουργία του συστήματος.η. Η αποφυγή άντλησης προσωπικών δεδομένων του χρήστη για χρήση τους στη διαδικασία της σύστασης. θ. H αποφυγή του προβλήματος της καθυστερημένης εκκίνησης (cold start). ι. Τα άκρως ικανοποιητικά αποτελέσματα με βάση τις μετρικές που χρησιμοποιήθηκαν για τη δοκιμή του συστήματος.κ. Η χρησιμότητα του συστήματος είναι χαρακτηριστική για όλες τις ομάδες στόχου, καθώς δίνεται η δυνατότητα παροχής χρήσιμης πληροφορίας τόσο στον πελάτη με σύσταση ανάλογη των αναγκών του, όσο και στον πάροχο υπηρεσίας/προϊόντος, προσδιορίζοντας του τις τάσεις όσον αφορά την ικανοποίηση των πελατών. Οι κύριες μετρικές που χρησιμοποιούνται για την μέτρηση της ποιότητας των συστάσεων που παράγονται είναι οι: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE).H διατριβή ολοκληρώνεται, με προτάσεις, για μελλοντική έρευνα και επέκταση του παρόντος συστήματος.
Ένα από τα πιο καίρια ερωτήματα για τους χρήστες του διαδικτύου, είναι πώς θα καταφέρουν να διαχειριστούν την τεράστια ποσότητα διαθέσιμης πληροφορίας, ώστε να καταλήξουν σε επιλογή προϊόντων που ανταποκρίνονται όσο το δυνατό καλύτερα στις προτιμήσεις και ανάγκες τους. Αντίστοιχα, οι εταιρείες που παρέχουν προϊόντα ή υπηρεσίες μέσω του διαδικτύου, προσπαθούν συστηματικά να εντοπίσουν μεθόδους ώστε να αποκωδικοποιήσουν με ακρίβεια τα προφίλ προτίμησης των χρηστών, με στόχο να καταφέρουν να προσαρμόσουν κατάλληλα τα προϊόντα τους και να αυξήσουν τις πωλήσεις τους.Για τους παραπάνω λόγους, η επιστημονική και ερευνητική κοινότητα που δραστηριοποιείται στο τομέα της ανάλυσης δεδομένων και το μάρκετινγκ έχει επικεντρώσει την προσπάθεια της, στην δημιουργία μεθοδολογιών που θα απαντήσουν όσο το δυνατόν πιο αποτελεσματικά τα παραπάνω ερωτήματα. Οι περισσότερες από αυτές τις μεθοδολογίες καταλήγουν στην ανάπτυξη προσαρμοστικών συστημάτων που αντλούν δεδομένα από το διαδίκτυο και εξάγουν προτάσεις για τους χρήστες. Η πιο γνωστή κατηγορία τέτοιου είδους συστημάτων είναι τα συστήματα συστάσεων (Recommender Systems). Στην παρούσα ερευνητική εργασία παρουσιάζεται η μεθοδολογία και τα αποτελέσματα πιλοτικής λειτουργίας ενός νέου υβριδικού συστήματος συστάσεων που βασίζεται στη χρήση μεθόδων ανάλυσης συναισθήματος, πολυκριτήριας ανάλυσης καθώς και μεθόδων φιλτραρίσματος. Η μεθοδολογία καταλήγει σε τέσσερα διαφορετικά είδη σύστασης, με άκρως ενδιαφέροντα αποτελέσματα.Μέσω του μεθοδολογικού πλαισίου γίνεται εφικτός ο προσδιορισμός των προτιμησιακών προφίλ των χρηστών του συστήματος, τα οποία εν συνεχεία αντιστοιχίζονται σε «προφίλ πελατών» που επιλέγουν συγκεκριμένα προϊόντα/υπηρεσίες που τους «ταιριάζουν».Έτσι, καταλήγουμε σε προσωποποιημένες συστάσεις προϊόντων στον χρήστη του συστήματος, που είναι ανάλογες των προτιμήσεων του. Επιπλέον δίνεται στο χρήστη η δυνατότητα να φιλτράρει τις διαθέσιμες εναλλακτικές με σχετική επιλογή από ένα σύνολο κατ’ αποκοπή κριτηρίων. Η χρήση του κατωφλιού ελάχιστης ικανοποίησης, που προσδιορίζεται από τα αποτελέσματα της ανάλυσης συναισθήματος στα σχόλια των πελατών, εγγυάται την ποιότητα των συστάσεων.Τα δεδομένα του συστήματος είναι πραγματικές απόψεις και βαθμολογίες χρηστών για καταλύματα, καθώς και χαρακτηριστικά καταλυμάτων που αντλήθηκαν από γνωστή διαδικτυακή πλατφόρμα κρατήσεων. H ανάπτυξη του συστήματος βασίστηκε στην μεθοδολογία CRISP-DM(Shearer, 2000a). Η αξιολόγηση του συστήματος συστάσεων γίνεται με μέτρηση της ακρίβειας προβλέψεων αξιολογήσεων σε πείραμα με πραγματικούς χρήστες.Για τη μελέτη περίπτωσης χρησιμοποιήθηκαν δεδομένα για τα τουριστικά καταλύματα του Νομού Χανίων. Τα πιο σημαντικά χαρακτηριστικά της συγκεκριμένης ερευνητικής προσπάθειας είναι: α. H χρήση μεγάλου όγκου πραγματικών δεδομένων σε αντίθεση με τις περισσότερες από τις υπάρχουσες έρευνες που χρησιμοποιούν έτοιμα τεστ σετ δεδομένων. β. Η χρησιμοποίηση όλης της διαθέσιμης αντλημένης πληροφορίας προκειμένου να καταλήξουμε σε σύσταση. Πιο συγκεκριμένα στην παρούσα μεθοδολογία χρησιμοποιούνται δεδομένα βαθμολογιών προϊόντων για την ανάλυση ικανοποίησης πελατών, δεδομένα απόψεων για τη συναισθηματική ανάλυση, στατικά δεδομένα των προϊόντων σαν κατ’ αποκοπή κριτήρια σε αντίθεση με τις περισσότερες μελέτες όπου χρησιμοποιούνται είτε βαθμολογίες, είτε ανάλυση σχολίων για την τελική σύσταση.γ. Η χρήση των αποτελεσμάτων της ανάλυσης συναισθήματος ως κατώφλια ποιότητας σύστασης. δ. Η επιτυχής εφαρμογή παραλλαγής της πρόσφατα παρουσιασθείσας μεθόδου WAP, για τη δημιουργία προτιμησιακού προφίλ χρήστη.ε. Η απαίτηση για εισαγωγή ελάχιστων δεδομένων από το χρήστη.στ. Ο ελάχιστος χρόνος που απαιτείται για την παραγωγή της σύστασης κατά τη λειτουργία του συστήματος.η. Η αποφυγή άντλησης προσωπικών δεδομένων του χρήστη για χρήση τους στη διαδικασία της σύστασης. θ. H αποφυγή του προβλήματος της καθυστερημένης εκκίνησης (cold start). ι. Τα άκρως ικανοποιητικά αποτελέσματα με βάση τις μετρικές που χρησιμοποιήθηκαν για τη δοκιμή του συστήματος.κ. Η χρησιμότητα του συστήματος είναι χαρακτηριστική για όλες τις ομάδες στόχου, καθώς δίνεται η δυνατότητα παροχής χρήσιμης πληροφορίας τόσο στον πελάτη με σύσταση ανάλογη των αναγκών του, όσο και στον πάροχο υπηρεσίας/προϊόντος, προσδιορίζοντας του τις τάσεις όσον αφορά την ικανοποίηση των πελατών. Οι κύριες μετρικές που χρησιμοποιούνται για την μέτρηση της ποιότητας των συστάσεων που παράγονται είναι οι: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE).H διατριβή ολοκληρώνεται, με προτάσεις, για μελλοντική έρευνα και επέκταση του παρόντος συστήματος.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.