In the face of persistent challenges posed by urbanization and climate change, the contemporary era has witnessed a growing urgency for urban intelligence and sustainable development. Consequently, a plethora of smart city schedules and policies have emerged, with smart city assessment serving as a pivotal benchmark for gauging policy effectiveness. However, owing to the inherent ambiguity of the smart city definition and the complexity of application scenarios, designers and decision-makers often struggle to ascertain their desired assessment frameworks swiftly and effectively. In this context, our study undertook a comprehensive analysis and comparative assessment of 33 recently introduced or inferred evaluation frameworks, drawn from a broad spectrum of extensive and longstanding research efforts. The overarching goal was to provide valuable reference points for designers and decision-makers navigating this intricate landscape. The assessment was conducted across seven key dimensions: generalizability, comprehensiveness, availability, flexibility, scientific rigor, transparency, and interpretability. These criteria hold the potential not only to guide the development trajectory and focus of upcoming smart city assessment models but also to serve as invaluable guidelines for stakeholders evaluating the outcomes of such models. Furthermore, they can serve as robust support for designers and decision-makers in their pursuit of targeted frameworks.