Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The measurement of human breathing is crucial for assessing the condition of the body. It opens up possibilities for various intelligent applications, like advanced medical monitoring and sleep analysis. Conventional approaches relying on wearable devices tend to be expensive and inconvenient for users. Recent research has shown that inexpensive WiFi devices commonly available in the market can be utilized effectively for non-contact breathing monitoring. WiFi-based breathing monitoring is highly sensitive to motion during the breathing process. This sensitivity arises because current methods primarily rely on extracting breathing signals from the amplitude and phase variations of WiFi Channel State Information (CSI) during breathing. However, these variations can be masked by body movements, leading to inaccurate counting of breathing cycles. To address this issue, we propose a method for extracting breathing signals based on the trajectories of two-chain CSI ratios on the I/Q plane. This method accurately monitors breathing by tracking and identifying the inflection points of the CSI ratio samples’ trajectories on the I/Q plane throughout the breathing cycle. We propose a dispersion model to label and filter out CSI ratio samples representing significant motion interference, thereby enhancing the robustness of the breathing monitoring system. Furthermore, to obtain accurate breathing waveforms, we propose a method for fitting the trajectory curve of the CSI ratio samples. Based on the fitted curve, a breathing segment extraction algorithm is introduced, enabling precise breathing monitoring. Our experimental results demonstrate that this approach achieves minimal error and significantly enhances the accuracy of WiFi-based breathing monitoring.
The measurement of human breathing is crucial for assessing the condition of the body. It opens up possibilities for various intelligent applications, like advanced medical monitoring and sleep analysis. Conventional approaches relying on wearable devices tend to be expensive and inconvenient for users. Recent research has shown that inexpensive WiFi devices commonly available in the market can be utilized effectively for non-contact breathing monitoring. WiFi-based breathing monitoring is highly sensitive to motion during the breathing process. This sensitivity arises because current methods primarily rely on extracting breathing signals from the amplitude and phase variations of WiFi Channel State Information (CSI) during breathing. However, these variations can be masked by body movements, leading to inaccurate counting of breathing cycles. To address this issue, we propose a method for extracting breathing signals based on the trajectories of two-chain CSI ratios on the I/Q plane. This method accurately monitors breathing by tracking and identifying the inflection points of the CSI ratio samples’ trajectories on the I/Q plane throughout the breathing cycle. We propose a dispersion model to label and filter out CSI ratio samples representing significant motion interference, thereby enhancing the robustness of the breathing monitoring system. Furthermore, to obtain accurate breathing waveforms, we propose a method for fitting the trajectory curve of the CSI ratio samples. Based on the fitted curve, a breathing segment extraction algorithm is introduced, enabling precise breathing monitoring. Our experimental results demonstrate that this approach achieves minimal error and significantly enhances the accuracy of WiFi-based breathing monitoring.
Human action recognition using WiFi channel state information (CSI) has gained attention due to its non-intrusive nature and potential applications in healthcare, smart environments, and security. However, the reliability of methods developed for CSI-based action recognition is often contingent on the quality of the datasets and evaluation protocols used. In this paper, we uncovered a critical data leakage issue, which arises from improper data partitioning, in a widely used WiFi CSI benchmark dataset. Specifically, the benchmark fails to separate individuals between the training and test sets, leading to inflated performance metrics as models inadvertently learn individual-specific features rather than generalizable action patterns. We analyzed this issue in depth, retrained several benchmarked models using corrected data partitioning methods, and demonstrated a significant drop in accuracy when individuals were properly separated across training and testing. Our findings highlight the importance of rigorous data partitioning in CSI-based action recognition and provide recommendations for mitigating data leakage in future research. This work contributes to the development of more robust and reliable human action recognition systems using WiFi CSI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.