This paper presents an approach for the verification of access control in smart contracts written in the Digital Asset Modeling Language (DAML). The approach utilizes Colored Petri Nets (CPNs) and their analysis tool CPN Tools. It is a model-driven-based approach that employs a new meta-model for capturing access control requirements in DAML contracts. The approach is supported by a suite of tools that fully automates all of the steps: parsing DAML code, generating DAML model instances, transforming the DAML models into CPN models, and model checking the generated CPN models. The approach is tested using several DAML scripts involving access control extracted from different domains of blockchain applications.