Multi-triggered DNA/bipyridinium dithienylethene (DTE) hybrid carboxymethyl cellulose (CMC)-based hydrogels are introduced. DTE exhibits cyclic and reversible photoisomerization properties, switching between the closed state (DTE c ), the electron acceptor, and the open isomer (DTE o ) that lacks electron acceptor properties. One system introduces a dual stimuli-responsive hydrogel containing CMC chains modified with electron donor dopamine sites and self-complementary nucleic acids. In the presence of DTE c and the CMC scaffold, a stiff hydrogel is formed, cooperatively stabilized by dopamine/DTE c donor−acceptor interactions and by duplex nucleic acids. The cyclic and reversible formation and dissociation of the supramolecular donor−acceptor interactions, through light-induced photoisomerization of DTE, or via oxidation and subsequent reduction of the dopamine sites, leads to hydrogels of switchable stiffness. Another system introduces a stimuli-responsive hydrogel triggered by one of three alternative signals. The stiff, multi-triggered hydrogel consists of CMC chains cross-linked by dopamine/DTE c donor−acceptor interactions, and by supramolecular K + -stabilized G-quadruplexes. The G-quadruplexes are reversibly separated in the presence of 18-crown-6 ether and reformed upon the addition of K + . The stiff hydrogel undergoes reversible transitions between highstiffness and low-stiffness states triggered by light, redox agents, or K + /crown ether. The hybrid donor−acceptor/G-quadruplex cross-linked hydrogel shows shape-memory and self-healing features. By using three different triggers and two alternative memory-codes, e.g., the dopamine/DTE c or the K + -stabilized G-quadruplexes, the guided shape-memory function of the hydrogel matrices is demonstrated.