Because of the complex interactions among the energy beam, the powder bed, and the material phase transformations, powder-bed fusion additive manufacturing is very sensitive to process parameters, such as beam power and scan speed. As a result, the process window to produce fully-dense, ASTM-grade components is narrow. In such scenario, envisioning further control of mechanical properties is very challenging. As a departure from traditional attempts to control microstructure by changing the process parameters, the authors propose the introduction of a thermoelectric module (TEM) as an active device inside the build chamber. Using process modeling, the authors show that by altering the heat flow into the material through the TEM device, the volume fraction of martensite can be controlled in its entire range. In particular, the authors show that modern TEM modules can deliver sufficient thermal power to block the formation of martensite. As a result, microstructure can be controlled locally while retaining the beam power and scan speed optimal for part density and surface finish. While the results are demonstrated for Ti6Al4V and the electron beam melting process, the concept is general and, in principle, applicable to other materials and machines systems such as IN781 and selective laser melting.