This study investigated the structural and environmental recovery of weathered hydrocarbon-contaminated soils using low-carbon solutions and aimed to ascertain the suitability of the remediated soils for engineering purposes. 25% (w/w) of ground ripe (RPP) and unripe (UPP) waste plantain peels were each added to 1 kg weathered hydrocarbon-contaminated soil samples and monitored for 90 days. Biological, physicochemical, and engineering properties were analysed for all samples in triplicates. After 90 days of remediation, RPP and UPP nutrients degraded the mid-distillate hydrocarbon alkanes by 93% and 88%, while the heavier hydrocarbon alkanes were degraded by 83% and 85%, respectively. The polyaromatic hydrocarbons (PAHs) had 89% and 93% degradation for RPP and UPP-treated soils, respectively, while the natural attenuation sample had 28% degradation. The soil compressive strength increased by 16% and 19% for RPP and UPP-treated soils, respectively, whereas the natural attenuation soil compressive strength remained fairly constant. It was observed that the remediated soil cohesion, angles of internal friction, maximum dry density, and optimum moisture content all improved as the remediation proceeded, which subsequently showed that the remediation influenced the engineering properties of the contaminated soils. Therefore, the remediation of the contaminated soil improved the structural suitability of the soils.