Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Deep learning, a subfield of artificial intelligence that uses neural networks with multiple layers, is rapidly changing healthcare. Its ability to analyze large datasets and extract relevant information makes it a powerful tool for improving diagnosis, treatment, and disease management. The integration of DL with pressure mats—which are devices that use pressure sensors to continuously and non-invasively monitor the interaction between patients and the contact surface—is a promising application. These pressure platforms generate data that can be very useful for detecting postural anomalies. In this paper we will discuss the application of deep learning algorithms in the analysis of pressure data for the detection of postural asymmetries in 139 patients aged 3 to 20 years. We investigated several main tasks: patient classification, hemibody segmentation, recognition of specific body parts, and generation of automated clinical reports. For this purpose, convolutional neural networks in their classification and regression modalities, the object detection algorithm YOLOv8, and the open language model LLaMa3 were used. Our results demonstrated high accuracy in all tasks: classification achieved 100% accuracy; hemibody division obtained an MAE of approximately 7; and object detection had an average accuracy of 70%. These results demonstrate the potential of this approach for monitoring postural and motor disabilities. By enabling personalized patient care, our methodology contributes to improved clinical outcomes and healthcare delivery. To our best knowledge, this is the first study that combines pressure images with multiple deep learning algorithms for the detection and assessment of postural disorders and motor disabilities in this group of patients.
Deep learning, a subfield of artificial intelligence that uses neural networks with multiple layers, is rapidly changing healthcare. Its ability to analyze large datasets and extract relevant information makes it a powerful tool for improving diagnosis, treatment, and disease management. The integration of DL with pressure mats—which are devices that use pressure sensors to continuously and non-invasively monitor the interaction between patients and the contact surface—is a promising application. These pressure platforms generate data that can be very useful for detecting postural anomalies. In this paper we will discuss the application of deep learning algorithms in the analysis of pressure data for the detection of postural asymmetries in 139 patients aged 3 to 20 years. We investigated several main tasks: patient classification, hemibody segmentation, recognition of specific body parts, and generation of automated clinical reports. For this purpose, convolutional neural networks in their classification and regression modalities, the object detection algorithm YOLOv8, and the open language model LLaMa3 were used. Our results demonstrated high accuracy in all tasks: classification achieved 100% accuracy; hemibody division obtained an MAE of approximately 7; and object detection had an average accuracy of 70%. These results demonstrate the potential of this approach for monitoring postural and motor disabilities. By enabling personalized patient care, our methodology contributes to improved clinical outcomes and healthcare delivery. To our best knowledge, this is the first study that combines pressure images with multiple deep learning algorithms for the detection and assessment of postural disorders and motor disabilities in this group of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.