Rock bolts are one of the most effective and conventional support techniques widely used in underground mining and tunneling operations to stabilize excavations and jointed rock masses. External factors such as corrosion, overloading, and improper installation can weaken rock bolts, which could result in ground failure causing injury or loss of life and production. Monitoring the health condition of rock bolts will reduce the risk of accidents providing a safer environment for workers and equipment. This paper reviews monitoring methods currently used to assess the condition of installed rock bolts. Furthermore, we classify the surveyed techniques depending on the type of problems they attempt to solve. Presented are methods such as ultrasonics, fiber optics, piezoelectric, electromagnetics, impact echo, acoustic emission, and numerical algorithms. Each method is based on a unique physical principle that aids in evaluating corrosion and strain levels in the rock bolt. However, recent research to detect corrosion has primarily focused on rebar type of rock bolts used in concrete structures. Consequently, more research is needed to monitor the condition of the other types of rock bolts used in the industry such as cable bolts and split set bolts. In conclusion, the paper highlights various methods of studying rock bolt failure initiated by strain, corrosion, and improper installation of the grouts. It also explores the research advancement made for the study of rock bolt failure. This investigation is specifically beneficial to the mining and tunneling industry for better understanding and prediction of rock bolt failure.