A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA.