Abstract:Manual calibration and testing on real vehicles are common methods of generating shifting schedules for newly developed vehicles. However, these methods are time-consuming. Shifting gear timing is an important operating parameter that affects shifting time, power loss, fuel efficiency, and driver comfort. The stacked autoencoder (SAE) algorithm, a type of artificial neural network, is used in this study to predict shifting gear timing on the basis of throttle percentage, vehicle velocity, and acceleration. Exp… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.