Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Various polyacrylamide polymers have been successfully applied in chemical EOR projects. These polymers are characterised by high molecular weights (MW) to achieve high viscosifying power. The molecular weight distribution (MWD) of the polymers has a major impact on polymer properties and performance. Measuring the molecular weight distribution is challenging using conventional methods. Field-Flow Fractionation (FFF) enables the determination of the distribution to select and quality check various polymers. Polymers with high molar masses (> 1 MDa) are used for EOR to obtain highly viscous aqueous solutions. The MWD of the polymers is crucial for the solution characteristics. Conventional analysis of polymers is performed using either viscometry – which is able to determine the average MW but does not give information on MWD, or size-exclusion chromatography – which is restricted to molecular weights of < 20 MDa. FFF is based on the analytes flowing at different speeds in a channel dependent on their size and mass. This effect leads to separation, which is then used to determine the MWD. FFF allows to determine the MW and MWD of various ultra-high molecular weight polyacrylamides (HPAAMs). The FFF measurements showed, that despite similar MWs are claimed, substantial differences in MWD are observed. This technology offered the quantification the MWD of HPAAMs up to a MW of 5 GDa. Furthermore, gyration radii of the HPAAM molecules were determined. Selecting polymers on viscosifying power only is not addressing issues related to different MW and MWDs such as selective polymer retention and degradation of the high molar mass part of the distribution. The results were used to improve the polymer selection for chemical EOR projects. Overall, this work presents a new technique for analysis of ultra-high molecular weight EOR polymers, which enables the possibility to determine the full range of polymer MWD. This available information enhances the EOR polymer selection process addressing selective polymer retention and mechanical degradation in addition to the viscosifying power of polymers.
Various polyacrylamide polymers have been successfully applied in chemical EOR projects. These polymers are characterised by high molecular weights (MW) to achieve high viscosifying power. The molecular weight distribution (MWD) of the polymers has a major impact on polymer properties and performance. Measuring the molecular weight distribution is challenging using conventional methods. Field-Flow Fractionation (FFF) enables the determination of the distribution to select and quality check various polymers. Polymers with high molar masses (> 1 MDa) are used for EOR to obtain highly viscous aqueous solutions. The MWD of the polymers is crucial for the solution characteristics. Conventional analysis of polymers is performed using either viscometry – which is able to determine the average MW but does not give information on MWD, or size-exclusion chromatography – which is restricted to molecular weights of < 20 MDa. FFF is based on the analytes flowing at different speeds in a channel dependent on their size and mass. This effect leads to separation, which is then used to determine the MWD. FFF allows to determine the MW and MWD of various ultra-high molecular weight polyacrylamides (HPAAMs). The FFF measurements showed, that despite similar MWs are claimed, substantial differences in MWD are observed. This technology offered the quantification the MWD of HPAAMs up to a MW of 5 GDa. Furthermore, gyration radii of the HPAAM molecules were determined. Selecting polymers on viscosifying power only is not addressing issues related to different MW and MWDs such as selective polymer retention and degradation of the high molar mass part of the distribution. The results were used to improve the polymer selection for chemical EOR projects. Overall, this work presents a new technique for analysis of ultra-high molecular weight EOR polymers, which enables the possibility to determine the full range of polymer MWD. This available information enhances the EOR polymer selection process addressing selective polymer retention and mechanical degradation in addition to the viscosifying power of polymers.
Summary Various polyacrylamide polymers have been successfully applied in chemical enhanced oil recovery (EOR) projects. These polymers are characterized by high molecular weights (MWs) to achieve high viscosifying power. The selection of polymers for chemical EOR is a crucial step in the field testing and implementation of such EOR projects. The reason is that per-pattern operating expenditures (OPEX) are one of the sensitive cost drivers for such projects. The important parameters for the selection of polymers are the filtration ratio, viscosifying power, polymer retention, and stability of the polymers at reservoir conditions. The MW distribution (MWD) of the polymers has a major impact on polymer properties and performance. Measuring the MWD is challenging using conventional methods. Field-flow fractionation (FFF) enables the determination of the distribution to select and quality check various polymers. Multiangle light scattering (MALS) was used as the main detector. Polymers with high MWs (>1 MDa) are used for EOR to obtain highly viscous aqueous solutions. The MWD of the polymers is crucial for the solution characteristics. Conventional analysis of polymers is performed using either viscometry, which is able to determine the average MW but does not give information on MWD, or size-exclusion chromatography (SEC), which is restricted to MWs of <20 MDa. FFF is based on the analytes flowing at different speeds in a channel-dependent on their size and mass. This effect leads to separation, which is then used to determine the MWD. FFF allows determining the MW and MWD of various ultrahigh MW polyacrylamides (HPAAMs). The FFF measurements showed that, despite similar MWs being claimed, substantial differences in MWD are observed. This technology allowed the quantification of the MWD of HPAAMs up to an MW of 5 GDa. Furthermore, gyration radii of the HPAAM molecules were determined. Selecting polymers on viscosifying power only is not addressing issues related to different MWs and MWDs such as selective polymer retention and degradation of the high molar mass part of the distribution. The results were used to improve the polymer selection for chemical EOR projects. In addition to viscosifying power and price, also the MWD and changes of the MWD in the porous medium are considered in the selection of the polymer. Overall, this work presents a new technique for the analysis of ultrahigh MW EOR polymers, which enables the possibility to determine the full range of polymer MWDs. This available information enhances the EOR polymer selection process addressing selective polymer retention and mechanical degradation in addition to the viscosifying power of polymers.
Chemical Enhanced Oil Recovery (cEOR) flooding is one of the more attractive methods to improve oil recovery. However, during times of instability in the oil market, cost of specialized chemicals and necessary facilities for alkali-surfactant-polymer (ASP) or surfactant-polymer (SP) make this technology very expensive and challenging to implement in the field. In majority of cases, polymer flooding alone has proven to be the most cost-effective solution that has resulted in attractive and predictable return on investment. In recent times, challenging economic environment has operators looking for added economic and sustainable savings. The possibility of re-injection of produced polymer to offset injection concentration requirements can lead to reduced cost and longer sustainability of oil recovery; thus, offering a subsequent reduction in produced water treatment and a reduced full-cycle carbon footprint. This innovative approach is subject to conditions experienced in the surface facilities, as well as in the reservoir. As part of this study, different polymer chemistries were investigated for their mobility control in porous media and comparative effect on oil recovery trends in presence of produced fluid containing residual polymer. The initial fluid-fluid testing and lab characterization results were validated against a mature field EOR project for reduction in polymer requirement to achieve target viscosity. Monophasic flow behavior experiments were performed in Bentheimer and Berea outcrop cores, while oil recovery experiments were performed in Bentheimer outcrops with different polymer solutions – freshly made and combinations with residual produced polymer. In addition, comparative injectivity experiments with field and lab prepared solutions were performed in Bentheimer outcrop cores. Based on field observations and lab measurements, a 10-15% reduction in fresh polymer loading could be achieved through the re-utilization of water containing residual polymer in these specific field conditions. Similar screen factor measurements were obtained with increasing concentration of residual polymer solution. This agreed with the monophasic injectivity experiments in both outcrop cores that resulted in similar resistance factors for fresh polymer and blends with produced water containing residual polymer solution. Oil recovery experiments also resulted in similar oil displacement behavior (approximately 30-40% OOIP after 0.5 PV waterflood) for fresh and blends with sheared polymer solutions, validating no loss in recovery potential, with the added benefit of 10-15% polymer loading reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.