Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The unique characteristic of gas fields in the Gulf of Thailand is the compartmentalized reservoir that requires a huge number of producing wells. The task of locating platform locations for whole field perspectives that also meet all operational criteria while minimizing the number of needed platforms is challenging. This decisional task has a critical impact on project viability, especially for marginal fields. This paper proposes an innovative solution to strengthen success in this business decision by integrating subsurface domain knowledge and optimization algorithms. This study presents an optimization algorithm for determining the optimal locations of wellhead platforms with limited numbers to maximize hydrocarbon resources. Firstly, the algorithm performs verification matching between wellhead locations and subsurface targets throughout the field under drilling criteria. Next, the optimal platform locations are optimized using mixed-integer linear programming (MILP) with the primary objective of maximizing hydrocarbon resources. The algorithm literally runs with an increment in number of platforms until there is no incremental hydrocarbon resources gain and additionally summarizes the results as the number of platforms vs. coverage resources. The algorithm has proven its viability by recommending more optimal platform locations in an actual field in the Gulf of Thailand. This algorithm-assisted workflow was able to reduce the number of required platforms. The main driver for this improved decision is that the MILP algorithm manage to improve well targeting and platform location selection under a large set of practical constraints. In contrast, manual workflow retains its limitations to consider them all. This optimization also reduces the working time required for the whole process of well targeting and platform selection. Formerly, a typical workflow takes months of equivalent man-days. Conversely, this algorithm succeeded in completing the operation within just a few hours. Further, the subsurface team saved time by eliminating some repetitive tasks, i.e., they could focus on reviewing results extracted from the optimizer. Moreover, this work demonstrated the capability to extend and scaleup to other fields with similar concepts, which ultimately could lead to more benefits. This innovative workflow translates the complicated subsurface procedure to a numerical optimization problem with a solid proven benefit from real field implementation. Apart from the positive business impact, this study shows that we can promote integration between modern data analytics and domain knowledge in oil and gas industry.
The unique characteristic of gas fields in the Gulf of Thailand is the compartmentalized reservoir that requires a huge number of producing wells. The task of locating platform locations for whole field perspectives that also meet all operational criteria while minimizing the number of needed platforms is challenging. This decisional task has a critical impact on project viability, especially for marginal fields. This paper proposes an innovative solution to strengthen success in this business decision by integrating subsurface domain knowledge and optimization algorithms. This study presents an optimization algorithm for determining the optimal locations of wellhead platforms with limited numbers to maximize hydrocarbon resources. Firstly, the algorithm performs verification matching between wellhead locations and subsurface targets throughout the field under drilling criteria. Next, the optimal platform locations are optimized using mixed-integer linear programming (MILP) with the primary objective of maximizing hydrocarbon resources. The algorithm literally runs with an increment in number of platforms until there is no incremental hydrocarbon resources gain and additionally summarizes the results as the number of platforms vs. coverage resources. The algorithm has proven its viability by recommending more optimal platform locations in an actual field in the Gulf of Thailand. This algorithm-assisted workflow was able to reduce the number of required platforms. The main driver for this improved decision is that the MILP algorithm manage to improve well targeting and platform location selection under a large set of practical constraints. In contrast, manual workflow retains its limitations to consider them all. This optimization also reduces the working time required for the whole process of well targeting and platform selection. Formerly, a typical workflow takes months of equivalent man-days. Conversely, this algorithm succeeded in completing the operation within just a few hours. Further, the subsurface team saved time by eliminating some repetitive tasks, i.e., they could focus on reviewing results extracted from the optimizer. Moreover, this work demonstrated the capability to extend and scaleup to other fields with similar concepts, which ultimately could lead to more benefits. This innovative workflow translates the complicated subsurface procedure to a numerical optimization problem with a solid proven benefit from real field implementation. Apart from the positive business impact, this study shows that we can promote integration between modern data analytics and domain knowledge in oil and gas industry.
Model-based field development optimization typically requires a large number of simulations. Consequently, this process may face challenges as model size and complexities increase. The objective of this paper is to apply a reduced-physics model with response surface approach for replacing full field simulation runs to reduce the time and resources required during a search for optimal solutions. The streamline technique is used to develop a reduced-physics model in this study. There are number of previous studies that demonstrated the use of streamlines for production optimization (e.g. well placement and/or rate allocation optimization). In a recent work (SPE 187298), an approximate equation was formulated to estimate the expected economic value based on streamlines and was applied into rate allocation optimization of a given well pattern. Our approach is to use this formulation to improve the efficiency of field development optimization by potentially screening out poor performing development designs without performing full simulations. The streamline-based surrogate model workflow was first applied and validated using a synthetic SPE-10 case study. The workflow was then applied to the Olympus field waterflood study. The study goal is to maximize the economic value by optimizing the well count, injector and producer locations, and completion design. The validation performed using random field development designs provided a rank correlation coefficient of 0.92 between the NPV values of full field simulations and streamline-based approximation from the Olympus field application. The streamline-surrogate model was then adopted with an optimization workflow (Genetic Algorithm) and response surface method with 2-stage approach. First, Genetic Algorithm (GA) optimization was performed using the streamline-surrogate as an initial stage to screen out suboptimal field development design. Then, a second GA optimization was performed using full simulations coupled with the response surface method, starting with results from the first stage. Response surfaces that were developed using samples through GA improved the process of screening poor economic cases at later stages, as the predictability of solution improved with more training. We demonstrated that the streamline-based surrogate formulation combined with the response surface approach will improve the optimization process of field development scenarios. The applicability of using the response surface approach by itself is limited for field applications due to the large number of simulations required for training and the risk of convergence at local minima. Multiple tests from the Olympus field development application demonstrated that the sequential combination of streamline-based surrogate formulation with response surface method had the best performance.
The well optimization technique with backward elimination aims to determine the optimum number of wells and their locations that can maximise project value and its recoverable resources, through repeated ranking of candidate wells and eliminating the poorest performer. For a greenfield development, subsurface uncertainties are typically still very large due to limited data from exploration and appraisal wells. This study outlines our approach to perform well optimization with these governing uncertainties in order to support the decision-making process. First, multiple realizations of reservoir models are constructed to represent range of possible outcomes by sampling different values from uncertainty parameters. Backward elimination for well optimization is then performed on those realizations. Wells can be ranked based on means and standard deviations of their performance, and the lowest rank candidate is eliminated from the process one at a time. At this point, project economic and resources are evaluated to find optimum set of wells for field development. Furthermore, well performance data from multiple realization models are carefully analyzed to define key subsurface uncertainties that need to be managed. Solution from this backward elimination with subsurface uncertainty workflow can maximize project valuation because it balances the risk of overspending to drill sub-optimum wells in some realizations with the risk of losing sell opportunity due to insufficient field deliverability in the other realizations. Development decision will be more robust because it is based on the optimum configuration that is applicable irrespective of the unknown uncertain quantities. Moreover, detailed analysis on well performance data allows us to better understand the risk associated with our planned wells so that appropriate de-risking plan can be developed and combined into development strategy. The backward elimination process is straightforward to implement and normally does not require very high computational expense. Thus, it is suitable to be used with uncertainty workflow with multiple realizations of reservoir models, which will increase computational requirement by multiple times. Other commonly used techniques for well optimization such as a Genetic Algorithm (GA) or an Evolutionary Algorithm (EA) are computational expensive by themselves already; and they will require even more runtime when using them with this uncertainty workflow. This paper extends backward elimination approach for well optimization to be used with uncertainty workflow. The overall uncertainty analysis workflow is discussed and provided, with key steps detailing the approach taken. Project valuation and recoverable resources can be further optimized with this new approach, and ultimately can guide the decision making in field development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.