Although there exist efficient methods to determine an optimal path in a graph, such as Dijkstra and A* algorithms, large instances of the path planning problem need more adequate and efficient techniques to obtain solutions in reasonable time. We propose two new time-linear relaxed versions of Dijkstra (RD) and A* (RA*) algorithms to solve the global path planning problem in large grid environments. The core idea consists in exploiting the grid-map structure to establish an accurate approximation of the optimal path, Communicated by V. Loia. B Imen Châari without visiting any cell more than once. We conducted extensive simulations (1290 runs on 43 maps of various types) for the proposed algorithms, both in four-neighbor and eight-neighbor grid environments, and compared them against original Dijkstra and A* algorithms with different heuristics. We demonstrate that our relaxed versions exhibit a substantial gain in terms of computational time (more than 3 times faster in average), and in most of tested problems an optimal solution (in at least 97 % of cases for RD and 82 % for RA*) or a very close one is reached (at most 9 % of extra length, and less than 2 % in average). Besides, the simulations also show that RA* provides a better trade-off between solution quality and execution time than previous bounded relaxations of A* that exist in the literature.