2015
DOI: 10.1007/978-3-319-14274-6
|View full text |Cite
|
Sign up to set email alerts
|

Smartphone-Based Human Activity Recognition

Abstract: ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX. No s'autoritza la presentació del seu contingut… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
15
0

Year Published

2015
2015
2021
2021

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 38 publications
(15 citation statements)
references
References 49 publications
0
15
0
Order By: Relevance
“…We used the public dataset Motion-Sense to assess the performance of our approach. It includes data sensed from 3-axis motion sensors at a constant frequency of 50 Hz collected with an iPhone 6s kept in the participant's front pocket [14]. Overall, a total of 24 participants have performed six activities during 15 trials in the same environment and conditions.…”
Section: A Datasetmentioning
confidence: 99%
“…We used the public dataset Motion-Sense to assess the performance of our approach. It includes data sensed from 3-axis motion sensors at a constant frequency of 50 Hz collected with an iPhone 6s kept in the participant's front pocket [14]. Overall, a total of 24 participants have performed six activities during 15 trials in the same environment and conditions.…”
Section: A Datasetmentioning
confidence: 99%
“…Figure 3 displays accelerometer signal of one of the experiments and the associated activities. The protocol of activities is detailed in [57]. The duration of an entire experiment was around 15 minutes and was repeated ten times.…”
Section: Datasetmentioning
confidence: 99%
“…This is because more nodes will memorize the form of information instead of generalizing the patterns. Few works related to HAR claimed that MLP yielded good accuracy (Reyes Ortiz, 2015;Shoaib et al, 2013) but consumed a longer time in its implementation (Alsheikh et al, 2015). MLP also showed great performance in another domain area such as forex trend movement in order to analyse the trend pattern based on historical performance (Tiong, Ow, Chek, Ngo, & Lee, 2016).…”
Section: Human Activity Recognition Applicationsmentioning
confidence: 99%
“…This procedure was required in order to trace how the signals changed over the time period. Then, the Butterworth low-pass filter was used to separate the body acceleration from the gravitational acceleration signals (Acharjee, Mukherjee, Mandal, & Mukherjee, 2015;Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz, 2013;Arif et al, 2014;Machado, Luisa Gomes, Gamboa, Paixao, & Costa, 2015;Reyes Ortiz, 2015;Sun, Zhang, Li, Guo, & Li, 2010). The remaining body acceleration signals later would be used for further process.…”
Section: Signal Segmentation and Feature Extractionmentioning
confidence: 99%