Abstract:The beneficial effect of a composite material anchorage system (CMAS) upon the ductility and load capacity of reinforced concrete (RC) beams strengthened either with glass (GFRP) or carbon (CFRP) fabrics was investigated. The anchorage system consisted of U-shaped GFRP or CFRP strip (U-strip) at end of FRP. The U-strips were bonded around the beam section and further anchored by two tufts of glass fibres, each of them embedded at the opposite beam face and specifically in the region of compression zone of the beam web. Experimental evaluations in simply supported lightly reinforced concrete (RC) beams strengthened with one GFRP or a CFRP sheet anchored at its ends by the composite anchorage have shown that their bending capacity has increased by 8% and 17%, respectively, in relation to the capacity attained in similar RC strengthened beams without anchorage. On the other hand, their ductility was improved by an amount of 94% and 37%, respectively. ANSYS finite element program was also used to numerically verify the response of strengthened RC beams obtained experimentally. The numerical results obtained are in good agreement with the experimental, thus, the calibrated model could now be used to extend the experimental results at lower cost.