[1] We present a new algorithm to infer information on the properties of charged meteoric smoke particles (MSPs) from the shape of incoherent scatter radar spectra. We show that in the presence of charged MSPs the spectrum can be approximated as the sum of two Lorentzians. These two distinct spectral lines correspond to two diffusion modes in the D-region plasma, i.e., one due the presence of positive ions and one because of heavy charged MSPs. The widths and amplitudes of these two spectral lines yield information on the radius and number density (the latter only for positively charged particles) of the charged MSPs. We apply this new algorithm to measurements obtained with the 430 MHz ISR at Arecibo and demonstrate that the observed spectra indeed bear the features anticipated in the presence of charged MSPs. Resulting values of retrieved MSP number densities and radii fall well within the range of values expected from models and independent in situ observations. Citation: Strelnikova, I., M. Rapp, S. Raizada, and M. Sulzer (2007), Meteor smoke particle properties derived from Arecibo incoherent scatter radar observations, Geophys. Res. Lett., 34, L15815,