An interacting radial and axial multi jet shear layer combustion system is described that has the rapid fuel and air mixing characteristics necessary for low NOx emissions. The radial jet has the fuel mixed with a proportion of the total primary zone flow and a 30% proportion was investigated. This radial jet was fuel rich at most primary zone operating conditions and ensured a flame stability far superior to the premixed situation. The scale up of the design from a 76mm to a 140mm diameter combustor was investigated. It was demonstrated that the distance the radial jet travelled before encountering the rapid mixing with the axial jets, had a strong influence on the combustion efficiency and NOx emissions. For both the 76 and 140mm combustors it was shown that the NOx emissions with propane were 50% greater than those for natural gas. It was also demonstrated that the low NOx emissions of the 76mm system were retained in the larger combustor with the same single central fuel injector design. There was a significant increase in NOx for some 140mm combustor configurations, but the emissions corrected to 15% oxygen below 10ppm were demonstratred, with a high combustion efficiency. The design thus demonstrated, in a practical combustor size, the potential for a dry solution to the NOx emissions problem of natural gas fired industrial gas turbines.