Abstract:Finding a numerical solution of linear algebraic equations is known to present an ill-posed in the sense that small perturbation in the right hand side may lead to large errors in the solution. It is important to verify the accuracy of an approximate solution by taking into account all possible errors in the elements of the matrix, and of the vector at the right hand side as well as roundoff errors. There may be computational difficulties with ill-posed systems as well. If to apply standard methods such as the method of Gauss elimination to such systems it may be not possible to obtain the correct solution though discrepancy can be less accuracy of data errors. Besides, a small discrepancy will not always guarantee proximity to a correct solution. Actually there is no need for preliminary assessment whether a given system of linear algebraic equations is inherently ill-conditioned or well-conditioned. In this paper we consider a new approach to the solution of algebraic systems, which is based on statistical effect in matrices of big order. It will be shown that the conditionality of the systems of equation may change with a high probability, if the matrix distorted by random noise. After applying some standard methods, we may introduce the received "chaotic" solution is used as a source of a priori information a more general variational problem.