IKK2/NF-κB pathway–mediated inflammation in vascular smooth muscle cells (VSMCs) has been proposed to be an etiologic factor in medial calcification and stiffness. However, the role of the IKK2/NF-κB pathway in medial calcification remains to be elucidated. In this study, we found that chronic kidney disease (CKD) induces inflammatory pathways through the local activation of the IKK2/NF-κB pathway in VMSCs associated with calcified vascular stiffness. Despite reducing the expression of inflammatory mediators, complete inhibition of the IKK2/NF-κB pathway in vitro and in vivo unexpectedly exacerbated vascular mineralization and stiffness. In contrast, activation of NF-κB by SMC-specific IκBα deficiency attenuated calcified vascular stiffness in CKD. Inhibition of the IKK2/NF-κB pathway induced cell death of VSMCs by reducing anti–cell death gene expression, whereas activation of NF-κB reduced CKD-dependent vascular cell death. In addition, increased calcification of extracellular vesicles through the inhibition of the IKK2/NF-κB pathway induced mineralization of VSMCs, which was significantly reduced by blocking cell death in vitro and in vivo. This study reveals that activation of the IKK2/NF-κB pathway in VSMCs plays a protective role in CKD-dependent calcified vascular stiffness by reducing the release of apoptotic calcifying extracellular vesicles.