2022
DOI: 10.1016/j.foodcont.2022.109100
|View full text |Cite
|
Sign up to set email alerts
|

SMOTE-based method for balanced spectral nondestructive detection of moldy apple core

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(11 citation statements)
references
References 43 publications
0
5
0
3
Order By: Relevance
“…Balanced distribution and representative experimental samples were the keys to construct classification models for dried Hami jujube. Oversampling techniques combined with appropriate machine learning models can solve the class imbalance problem and further improve the classification performance of the model [ 18 ]. In this study, BL-SMOTE and ADASYN improved the model significantly, and BL-SMOTE was slightly better.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Balanced distribution and representative experimental samples were the keys to construct classification models for dried Hami jujube. Oversampling techniques combined with appropriate machine learning models can solve the class imbalance problem and further improve the classification performance of the model [ 18 ]. In this study, BL-SMOTE and ADASYN improved the model significantly, and BL-SMOTE was slightly better.…”
Section: Discussionmentioning
confidence: 99%
“…Begum et al [ 17 ] used the oversampling algorithm to process imbalance data in coal samples and demonstrated its effectiveness. Similarly, the oversampling algorithms were used for the detection of moldy apple core [ 18 ]. Still, few studies have focused on the effects of different oversampling strategies on the classification performance of the model.…”
Section: Introductionmentioning
confidence: 99%
“…Data yang tidak seimbang perlu ditangani karena data tidak seimbang dapat mengakibatkan kesalahan prediksi sehingga dapat mempengaruhi akurasi model [19]. Teknik yang dapat digunakan untuk mengatasi masalah data tidak seimbang yaitu: teknik undersampling dan teknik oversampling [20]. SMOTE adalah sebuah teknik yang kurang lebih sama dengan teknik oversampling.…”
Section: Data Tidak Seimbangunclassified
“…SMOTE adalah sebuah teknik yang kurang lebih sama dengan teknik oversampling. SMOTE tidak hanya menduplikasi data yang sama akan tetapi SMOTE akan membuat data baru yang menyerupai data asli dari kelas minoritas untuk menyeimbangkan data, sehingga data baru dari kelas minoritas jauh lebih beragam [18,20]. Pengunaan SMOTE dalam data berdimensi rendah (jumlah variabel jauh lebih sedikit dibanding jumlah amatan) sangat efektif dalam penanganan kelas yang tidak seimbang, sedang pada data berdimensi tinggi (jumlah variabel jauh lebih banyak dibanding jumlah amatan) penggunaan SMOTE kurang efektif [18].…”
Section: Data Tidak Seimbangunclassified
“…yeni üretilen verilerin örneklem olarak alınan verilere yakın olduğu söylenebilir. İlgili yöntem sayesinde, rastgele aşırı örneklemenin sebep olduğu aşırı öğrenme ve rastgele yetersiz örneklemenin neden olduğu bilgi kaybı gibi istenmeyen durumların(Zhang et al, 2022) çözülebilmesi için yapay veriler oluşturularak veri setinin dengelenmesi sağlanır. SMOTE'nin kullanılmasındaki neden onun rastgele örnekleme yöntemlerine kıyasla sahip olduğu avantajlarıdır.…”
unclassified