The nature of the progenitors of Type Ia supernovae (SNe Ia) is not yet fully understood. In the single-degenerate (SD) scenario, the collision of the SN ejecta with its companion star is expected to produce detectable ultraviolet (UV) emission in the first few days after the SN explosion within certain viewing angles. It was recently found that the B − V colour of the nearby SN Ia SN 2012cg at about sixteen days before the maximum B-band brightness was about 0.2 mag bluer than those of other normal SNe Ia, which was reported as the first evidence for excess blue light from the interaction of normal SN Ia ejecta with its companion star. In this work, we compare current observations for SN 2012cg from its pre-explosion phase to the late-time nebular phase with theoretical predictions from binary evolution and population synthesis calculations for a variety of popular progenitor scenarios. We find that a main-sequence donor or a carbon-oxygen white dwarf donor binary system is more likely to be the progenitor of SN 2012cg. However, both scenarios also predict properties which are in contradiction to the observed features of this system. Taking both theoretical and observational uncertainties into account, we suggest that it might be too early to conclude that SN 2012cg was produced from an explosion of a Chandrasekhar-mass white dwarf in the SD scenario. Future observations and improved detailed theoretical modelling are still required to place a more stringent constraint on the progenitor of SN 2012cg.