Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades that have been the subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing different methods of light curve fitting and distance estimation.
Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147 and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can also be estimated with higher accuracy.
Methods. We present and analyse new BV griz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compared the individual distance estimates of these three SNe given by the Spectral Adaptive Lightcurve Template (SALT) code, and we also checked their consistency with the results from the Multi-Color Light Curve Shape (MLCS) code. The early spectral series of SN 2021hpr was also fit with the radiative spectral code TARDIS to verify the explosion properties and constrain the chemical distribution of the outer ejecta.
Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 ± 1.0 Mpc, which matches with the distance inferred by the most up-to-date light curve fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected ~1.12 ± 0.28 M⊙ from its progenitor white dwarf and synthesized ~0.44 ± 0.14 M⊙ of radioactive 56Ni.