Snake River Sockeye Salmon Oncorhynchus nerka, listed as an endangered species in 1991, currently inhabit three nursery lakes (Redfish, Pettit, and Alturas lakes) in the Sawtooth Valley, Idaho. Conspecific kokanee (lacustrine Sockeye Salmon) are also present in the lakes. Snake River Sockeye Salmon recovery efforts, initially focused on genetic conservation, are now attempting to rebuild naturally spawning populations using hatchery supplementation. However, in Sockeye Salmon nursery lakes, density dependence is frequently observed when elevated O. nerka abundance leads to declines in zooplankton biomass, body size, and shifts in community composition. In turn, these changes lead to reductions in juvenile O. nerka growth rates, survival, and adult returns. We examined a long‐term data set of O. nerka population metrics and associated zooplankton community metrics. We found evidence of density dependence within and among nursery lakes. We detected differences in zooplankton biomass, lengths of preferred zooplankton prey (Daphnia spp. and cyclopoid copepods), parr growth rates, and age‐1 smolt size among the three lakes. We found negative relationships between O. nerka density and zooplankton biomass and size. We identified positive relationships between zooplankton biomass and two response variables: smolt size at migration and growth rates of hatchery parr. The relationships were generally similar among lakes. Variable outcomes were a result of differences in O. nerka density (or zooplankton biomass), controlled primarily by the relative proportion of spawning and rearing habitat in each lake. Understanding unique lake habitats, ecological interactions, and the role of density dependence is germane to management of Snake River Sockeye Salmon populations.