2017
DOI: 10.1126/science.aan1568
|View full text |Cite
|
Sign up to set email alerts
|

Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions

Abstract: We present an approach to multidimensional high-throughput discovery of catalytic coupling reactions that integrates molecular design with automated analysis and interpretation of mass spectral data. We simultaneously assessed the reactivity of three pools of compounds that shared the same functional groups (halides, boronic acids, alkenes, and alkynes, among other groups) but carried inactive substituents having specifically designed differences in masses. The substituents were chosen such that the products f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
57
0
5

Year Published

2017
2017
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 95 publications
(62 citation statements)
references
References 57 publications
0
57
0
5
Order By: Relevance
“…Towards improving this high throughput technique for new reaction discovery,Hartwig and Tr oshin recently reported am ore efficient "SNAP deconvolution" approach to identify reaction products from complex mixtures (Scheme 9). [43] Thes ame strategy of subjecting ac ocktail of substrates to diverse reaction conditions was used, but with an improvement that made mathematical deconvolution of the results possible.They prepared acocktail of 15 molecules with differing functionality that could potentially react to generate known or new 2-component or multi-component products.A second and third near-identical cocktail were also prepared, each with 15 molecules bearing the same functionality but having minor variations in the backbone,resulting in different molecular weights,g iving 3s ets of 15 substrates that the researchers referred to as the a, b,a nd g pools.T he three pools of substrates were each subjected to the same set of 96 diverse catalytic conditions using three plates,p erforming apseudo-triplicate high throughput screen.…”
Section: Screening Strategies For Rapid Reaction Discoverymentioning
confidence: 99%
“…Towards improving this high throughput technique for new reaction discovery,Hartwig and Tr oshin recently reported am ore efficient "SNAP deconvolution" approach to identify reaction products from complex mixtures (Scheme 9). [43] Thes ame strategy of subjecting ac ocktail of substrates to diverse reaction conditions was used, but with an improvement that made mathematical deconvolution of the results possible.They prepared acocktail of 15 molecules with differing functionality that could potentially react to generate known or new 2-component or multi-component products.A second and third near-identical cocktail were also prepared, each with 15 molecules bearing the same functionality but having minor variations in the backbone,resulting in different molecular weights,g iving 3s ets of 15 substrates that the researchers referred to as the a, b,a nd g pools.T he three pools of substrates were each subjected to the same set of 96 diverse catalytic conditions using three plates,p erforming apseudo-triplicate high throughput screen.…”
Section: Screening Strategies For Rapid Reaction Discoverymentioning
confidence: 99%
“…[43] Sie setzten dieselbe Strategie um, bei der ein Substratcocktail diversen Reaktionsbedingungen ausgesetzt wurde,a llerdings mit einer Verbesserung, die eine mathematische Entfaltung der Ergebnisse mçglich machte.Sie stellten einen Cocktail aus 15 Molekülen mit unterschiedlichen funktionellen Gruppen her,d er unter Bildung neuer Zwei-oder Mehr-Komponenten-Produkte reagieren konnte.A ußerdem wurde ein zweiter und dritter, nahezu identischer Cocktail vorbereitet, mit jeweils 15 Molekülen, die dieselben funktionellen Gruppen trugen, aber geringe Va riationen im Rückgrat aufwiesen, was zu unterschiedlichen Molekulargewichten führte,s odass 3Sätze aus 15 Substraten vorlagen, die die Forscher als a-, b-und g-Pools bezeichneten. [43] Sie setzten dieselbe Strategie um, bei der ein Substratcocktail diversen Reaktionsbedingungen ausgesetzt wurde,a llerdings mit einer Verbesserung, die eine mathematische Entfaltung der Ergebnisse mçglich machte.Sie stellten einen Cocktail aus 15 Molekülen mit unterschiedlichen funktionellen Gruppen her,d er unter Bildung neuer Zwei-oder Mehr-Komponenten-Produkte reagieren konnte.A ußerdem wurde ein zweiter und dritter, nahezu identischer Cocktail vorbereitet, mit jeweils 15 Molekülen, die dieselben funktionellen Gruppen trugen, aber geringe Va riationen im Rückgrat aufwiesen, was zu unterschiedlichen Molekulargewichten führte,s odass 3Sätze aus 15 Substraten vorlagen, die die Forscher als a-, b-und g-Pools bezeichneten.…”
Section: Kurzaufsätzeunclassified
“…For example, C-H functionalisations at sp 3 -hybridised carbon offer great promise 17 for, but are largely untapped in, drug discovery. 30,31 Notably, high-throughput experimentation can also enable the initial discovery of new catalytic reactions 32 and the identification of transformations that are particularly functional group-tolerant. 33 HPLC, high-performance liquid chromatography; UV, ultraviolet; MS, mass spectrometry; LC-MS, liquid chromatography-mass spectrometry.…”
Section: Integration Of Reaction Optimisation and Synthesismentioning
confidence: 99%