Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission.synaptopHluorin | membrane fusion | single molecule bleaching | SNARE density I n conventional neuronal synapses, fast synaptic transmission is mediated by release of neurotransmitter upon Ca 2+ -triggered synaptic vesicle (SV) exocytosis. This process is exquisitely regulated both spatially and temporally. The core of the SV fusion machinery is formed by three members of the soluble N-ethylmaleimidesensitive factor attachment protein receptor (SNARE) protein family, which is characterized by conserved sequences of 60-70 amino acids called SNARE motifs: vesicle SNARE protein, synaptobrevin-2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25 (1-3).Zipper-like assembly of the SNARE motifs from their N-terminal ends toward their membrane-proximal C termini results in the formation of a highly stable heterotrimeric "trans-SNARE complex" (also called "SNAREpin"), consisting of four parallel α-helices, which brings the two membranes into close apposition for fusion (4-7). Previous studies have suggested that several of these SNARE complexes might assemble in rosette-shaped multivalent supercomplexes, forming a ring, around the fusion pore; however, there is no direct evidence in support of this model (5,8,9). Therefore, the precise number of SNARE complexes minimally required to drive membrane fusion is highly debated and current estimates range between 1 and 15 (10-18). Some of these results are based on single-molecule fluorescence measurements in artificially reconstituted liposomes, whereas others are based on theoretical models, kinetic analysis, and extrapolations from dose-response relationships. Therefore, it is essential to apply a more direct method capable of visualizing single SNARE complexes in real time in a physiological setting.In the present study we have used a unique direct approach to count the number of syb2 molecules required for fast...