The past few years have seen an absolute revolution in genomic technologies and their potential applications to ecology and evolutionary biology research. Such advances open up a range of opportunities for research on non-model organisms and individuals drawn from wild populations. This has resulted in exciting new research seeking to identify the genetic polymorphisms important in adaptation and speciation and how they are organised within the genome. Building on this, there is great interest in the extent to which similar evolutionary patterns are found across multiple populations, particularly whether consistent genetic mechanisms are associated with recurrent phenotypes. A powerful context for disentangling these mechanisms is to focus on highly diverse radiations, where phenotypes vary in and across environments. Therefore, the high diversity found within and among species of salmonid fishes such as charr (Salvelinus) make for an ideal 'non'-model for genomic research. This paper outlines some of the current approaches available in ecological genomics and highlights some recent advances in salmonid research. It also suggests avenues for the sort of predictions that can be derived from ecological genomics, with the aim of understanding the genetics behind the fantastic diversity of salmonid fishes.Keywords Ecological genomics Á Transcriptomics Á Speciation Á Genetic mapping Á Salmonid fishes Á Charr Recent advances in the field of molecular biology have exciting implications for research on the ecology and evolution of natural populations. Particularly, high throughput 'next-generation' sequencing (NGS) (also known as 'second-generation', or 'massively parallel' sequencing) can generate huge amounts of genomic or transcriptomic data on almost any organism. NGS is dramatically decreasing in cost and the associated tools and pipelines are within reach of even modest research groups. This is therefore becoming an invaluable tool for understanding the origins and maintenance of biodiversity. These exciting new approaches can address long-standing questions in evolutionary biology, such as: What is the genetic basis of adaptations? How do closely related species differ? Why are some lineages more diverse than others?The challenge for 'omics' of non-model organisms now shifts away from raw data generation to focusing on informative evolutionary, ecological, and environmental contexts in order to most efficiently and