Polycrystalline SnS thin films were grown on glass substrates using a novel procedure involving a chemical reaction between the precursor species evaporated simultaneously. This is a relatively new material, which exhibits excellent properties to be used as absorbent layer in solar cells. X-ray diffraction (XRD) measurements indicate that the synthesized samples grow in several phases (SnS, SnS 2 and Sn 2 S 3 ) depending upon the deposition conditions. However, through an exhaustive parameter study, conditions were found to grow thin films predominantly in the SnS phase with orthorhombic structure. It was found that this type of compound presents p-type conductivity, a high absorption coefficient (greater than 10 4 cm −1 ) and an energy band gap E g of about 1.3 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.