The effects of interactions between and among chlorine (Cl), sulfur (S), phosphorus (P), and minerals on migration, transformation, and volatilization of zinc (Zn) were numerically simulated in sludge co-incineration using the chemical thermodynamic equilibrium method. Our results showed that all the minerals of Fe 2 O 3 , Al 2 O 3 , Fe 2 O 3 , and TiO 2 except for CaO in the sludge co-incineration system reacted with Zn which inhibited the Zn volatilization. The presence of S and P was beneficial to the formation of ZnSO 4 (s) and Zn 3 (PO 4 ) 2 (s). Cl weakened the chemical reactions between the minerals and Zn, thus increasing the Zn volatilization. Changes in Zn transformation and migration induced by the coupling of Cl + S were mainly controlled by Cl, S, and the minerals, while those induced by Cl + P and S + P were mainly controlled by P and S + P. The presence of P + Cl, S + Cl, S + P, S + Cl + P, Cl, and Al 2 O 3 in the coexisting mineral system controlled the reactions between the minerals and Zn.