We prove that any proper, geodesic metric space whose Dehn function grows asymptotically like the Euclidean one has asymptotic cones which are non-positively curved in the sense of Alexandrov, thus are CAT(0). This is new already in the setting of Riemannian manifolds and establishes in particular the borderline case of a result about the sharp isoperimetric constant which implies Gromov hyperbolicity. Our result moreover provides a large scale analog of a recent result of Lytchak and the author which characterizes proper CAT(0) in terms of the growth of the Dehn function at all scales. We finally obtain a generalization of this result of Lytchak and the author. Namely, we show that if the Dehn function of a proper, geodesic metric space is sufficiently close to the Euclidean Dehn function up to some scale then the space is not far (in a suitable sense) from being CAT(0) up to that scale.Date: November 9, 2018. 1991 Mathematics Subject Classification. 53C23, 20F65, 49Q05.