Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural activity during unrestrained behavior and their open-source versions have helped to distribute them at an affordable cost. Generally, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight, small footprint open-source miniscope that incorporates a high-sensitivity image sensor, an inertial measurement unit (IMU), and an LED driver for an external optogenetic probe. We highlight the advantages of NINscope by performing the first simultaneous cellular resolution (dual scope) recordings from cerebellum and cerebral cortex in unrestrained mice, revealing that the activity of both regions generally precede the onset of behavioral acceleration. At the same time, we demonstrate the optogenetic stimulation capabilities of NINscope and show that cerebral cortical activity can be driven strongly by cerebellar stimulation. Finally, we combine optogenetic stimulation of cortex with imaging in the dorsal striatum and replicate previous studies that show action space is encoded by neurons in this subcortical region. In combination with cross-platform control software NINscope is a versatile addition to the expanding toolbox of open-source miniscopes and will aid multi-region circuit investigations during unrestrained behavior.