Children with neurodevelopmental disorders, such as developmental coordination disorder (DCD), exhibit gross to fine sensorimotor impairments, reduced physical activity and interactions with the environment and people. This disorder co‐exists with cognitive deficits, executive dysfunctions and learning impairments. Previously, we demonstrated in rats that limited amounts and atypical patterns of movements and somatosensory feedback during early movement restriction manifested in adulthood as degraded postural and locomotor abilities, and musculoskeletal histopathology, including muscle atrophy, hyperexcitability within sensorimotor circuitry and maladaptive cortical plasticity, leading to functional disorganization of the primary somatosensory and motor cortices in the absence of cortical histopathology. In this study, we asked how this developmental sensorimotor restriction (SMR) started to impact the integration of multisensory information and the emergence of sensorimotor reflexes in rats. We also questioned the enduring impact of SMR on motor activities, pain and memory. SMR led to deficits in the emergence of swimming and sensorimotor reflexes, the development of pain and altered locomotor patterns and posture with toe‐walking, adult motor performance and night spontaneous activity. In addition, SMR induced exploratory hyperactivity, short‐term impairments in object‐recognition tasks and long‐term deficits in object‐location tasks. SMR rats displayed minor alterations in histological features of the hippocampus, entorhinal, perirhinal and postrhinal cortices yet no obvious changes in the prefrontal cortex. Taken all together, these results show similarities with the symptoms observed in children with DCD, although further exploration seems required to postulate whether developmental SMR corresponds to a rat model of DCD.