Background
Reducing inequalities in physical activity (PA) and PA-associated health outcomes is a priority for public health. Interventions to promote PA may reduce inequalities, but may also unintentionally increase them. Thus, there is a need to analyze equity-specific intervention effects. However, the potential for analyzing equity-specific effects of PA interventions has not yet been sufficiently exploited. The aim of this study was to set out a novel equity-specific re-analysis strategy tried out in an international interdisciplinary collaboration.
Methods
The re-analysis strategy comprised harmonizing choice and definition of outcomes, exposures, socio-demographic indicators, and statistical analysis strategies across studies, as well as synthesizing results. It was applied in a collaboration of a convenience sample of eight European PA intervention studies in adults aged ≥45 years. Weekly minutes of moderate-to-vigorous PA was harmonized as outcome. Any versus no intervention was harmonized as exposure. Gender, education, income, area deprivation, and marital status were harmonized as socio-demographic indicators. Interactions between the intervention and socio-demographic indicators on moderate-to-vigorous PA were analyzed using multivariable linear regression and random-effects meta-analysis.
Results
The collaborative experience shows that the novel re-analysis strategy can be applied to investigate equity-specific effects of existing PA interventions. Across our convenience sample of studies, no consistent pattern of equity-specific intervention effects was found. Pooled estimates suggested that intervention effects did not differ by gender, education, income, area deprivation, and marital status.
Conclusions
To exploit the potential for equity-specific effect analysis, we encourage future studies to apply the strategy to representative samples of existing study data. Ensuring sufficient representation of ‘hard to reach’ groups such as the most disadvantaged in study samples is of particular importance. This will help to extend the limited evidence required for the design and prioritization of future interventions that are most likely to reduce health inequalities.